<- job_time_hist(ipr_log_path = infile_iprlog)
hist_plot hist_plot
Figures
Let’s look at some figures!
Explore your IPR results here
Runtime histogram
Domain stats
<- ipr_combnd |>
ipr_summ group_by(AccNum, Analysis) |>
summarize(TotalDoms=n())
# static plot
<- ipr_summ |>
ps ggplot(aes(y = TotalDoms)) +
geom_histogram(stat="bin")
# plotly
ggplotly(ps)
gganimate | domains-per-protein
<- ipr_combnd |>
ipr_summ2 group_by(AccNum, DB.ID) |>
summarise(TotDoms=n())
|>
ipr_summ2 ggplot(aes(y=DB.ID, x=TotDoms, fill=DB.ID)) +
geom_bar(stat="identity") +
theme_minimal() +
transition_states(AccNum, transition_length=2, state_length=1) +
ease_aes('linear')
heatmap
|>
ipr_summ2 ggplot(aes(x=AccNum, y=DB.ID, fill=TotDoms)) +
geom_tile() + theme_minimal() +
scale_fill_viridis_b() +
theme(axis.text.x = element_text(angle = 90, hjust=1))
## plotly
# ipr_wide <- ipr_summ2 |>
# pivot_wider(names_from = DB.ID, values_from = TotDoms) |>
# column_to_rownames(var = "AccNum")
# ipr_wide[is.na(ipr_wide)] <- 0
#
# plot_ly(x = colnames(ipr_wide),
# y = rownames(ipr_wide),
# z=ipr_wide,
# type = "heatmap")
Wordcloud
|>
ipr_combnd filter(Analysis=="Pfam") |>
group_by(DB.ID) |>
summarize(freq=n()) |> select(word=DB.ID, freq) |>
wordcloud2()