Plots performance metric or runtime vs. training data proportion or number of cross-validation folds, colored by model.

plotDefaultEval(
  default_eval_tibble,
  x_default_eval = "train_prop",
  y_default_eval = "avg_f1_score",
  xlab = "Train data proportion",
  ylab = "Average F1 score"
)

Arguments

default_eval_tibble

Output of findOptimalMLDefaults()

x_default_eval

rlang::chr x value of default evaluation plot: "train_prop" or "n_fold"

y_default_eval

rlang::chr y value of default evaluation plot. It can be "avg_runtime_sec" or one of the following performance metrics: "avg_f1_score", "avg_log2_apop", "avg_bal_acc", or "avg_nmcc"

xlab

rlang::chr Label for x axis

ylab

rlang::chr Label for y axis

Value

A ggplot2 scatterplot (performance metric or runtime vs. train_prop or n_fold), colored by model