Plots performance metric or runtime vs. training data proportion or number of cross-validation folds, colored by model.
plotDefaultEval(
default_eval_tibble,
x_default_eval = "train_prop",
y_default_eval = "avg_f1_score",
xlab = "Train data proportion",
ylab = "Average F1 score"
)Output of findOptimalMLDefaults()
rlang::chr x value of default evaluation plot: "train_prop" or "n_fold"
rlang::chr y value of default evaluation plot. It can be "avg_runtime_sec" or one of the following performance metrics: "avg_f1_score", "avg_log2_apop", "avg_bal_acc", or "avg_nmcc"
rlang::chr Label for x axis
rlang::chr Label for y axis
A ggplot2 scatterplot (performance metric or runtime vs.
train_prop or n_fold), colored by model